Consider all integer combinations of ab for 2 ≤ a ≤ 5 and 2 ≤ b ≤ 5:
22=4, 23=8, 24=16, 25=32
32=9, 33=27, 34=81, 35=243
42=16, 43=64, 44=256, 45=1024
52=25, 53=125, 54=625, 55=3125If they are then placed in numerical order, with any repeats removed, we get the following sequence of 15 distinct terms:
4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125
How many distinct terms are in the sequence generated by ab for 2 ≤ a ≤ 100 and 2 ≤ b ≤ 100?
using System;
using System.Collections.Generic;
using System.Diagnostics;
namespace Project_Euler_29
{
internal class Program
{
private static void Main(string[] args)
{
Stopwatch sw = Stopwatch.StartNew();
HashSet<double> results = new HashSet<double>();
for (int a = 2; a <= 100; a++)
{
for (int b = 2; b <= 100; b++)
{
results.Add(Math.Pow(a, b));
}
}
sw.Stop();
Console.WriteLine($"Number of distinct powers: {results.Count}");
Console.WriteLine($"Took {sw.ElapsedMilliseconds}ms");
}
}
}